
3 4's		4 3' <i>s</i>
$3 \cdot 4 = 4 + 4 + 4 = 12$	or	$3 \cdot 4 = 3 + 3 + 3 + 3 = 12$

3.4

3 ⁴			4 3's	
	$3^4 = 3 \cdot 3 \cdot 3 \cdot 3$	8=81		
	3 ⁴	3	Δ	3

-3-7+2 -3-(7+2) $36 \div 2 \cdot 3$

$$-6 - 3 \cdot 2^3 + (-4)^2 \qquad (-6 - 3) \cdot 2^3 + (-4)^2$$

 $-6 - 3 \cdot 2^3 + (-4)^2 = -$

-9(2-5)-7	$-9 \cdot 2 - (5 - 7)$
$30 \div 2 \cdot 5$	$30 \div (2 \cdot 5)$
$(30 \div 2) \cdot 5$	$6 - 8 \div 2$
$(6-8) \div 2$	$6 - (8 \div 2)$
$48 \div 8 \div 2$	$48 \div (8 \div 2)$
$(48 \div 8) \div 2$	$3 \cdot 5 - 3 \cdot 7$
3(5-7)	$3 \cdot (5-3) \cdot 7$

34	5 ³
2 ⁵	7^{2}
$(-4)^2$	-4 ²

(—

							12	18
1, 2, 3	6		1	2	18	6		
6 = GCF(12, 18)		36						
12								

2^2		2				2	20	27	3 ³
	3			20	27		5		
5		20	27						

LCM(20, 27) = 2

$$LCM(x^7y^8z^5, x^4y^{12}w) = x^7y^{12}z^5w$$

$GCF(18x^4y$

$3^2 \cdot 5 \cdot 7, 3 \cdot 7^2 \cdot 13$	$5^2 \cdot 11$,	$5 \cdot 7 \cdot 11^2$
$2^4 \cdot 5^2 \cdot 17, 2^2 \cdot 5^3$	$2^4 \cdot 3^2$,	$5^{2} \cdot 13$

a^2b^3 , ab^7	$x^3y^2z^5$, $x^5y^9z^2$
a^7bc^3 , a^2b^5	x^3y^5w , xz^4w^8
$6x^3$, $15x^7$	$12xy, 9x^3$
$8a^2b^7$, $15a^4b^2$	$24y^{13}$, $60y^{10}$
$51x^2w$, $27w^5$	$9x^3$, $8y^3$
$16ab^2$, $52a^2b^5$	$48x^7y^3$, $28y^7zw$

$8xy^2, 20x^3yw,$	$12x^4y^3w^5$	$21a^3b^9$, $9a^7b^5$, $15a^5b^{12}$	2
$18b^4c^3$, $24c^6d^2$	$, 42bc^2d^7$	$8x^5$, $9x^{12}$, $6x^7$	

$\frac{5}{12} + \frac{1}{4}$	$\frac{2}{3} - \frac{4}{5}$		$\frac{7}{12} + \frac{3}{16}$	$\frac{1}{2\cdot 3^3} + \frac{7}{2^2\cdot 3^2\cdot 5}$ 12
12 4 12		$\frac{5}{12}$	$\frac{1}{4}$	12
$\frac{5}{12} + \frac{1}{4} = \frac{5}{12} + \frac{1 \cdot 3}{4 \cdot 3}$				12
$=\frac{5}{12} + \frac{3}{12}$ $=\frac{8}{12}$ $=\frac{2}{3}$				12

$$12 = 2^{2} \cdot 3 \qquad 16 = 2^{4} \quad 48 = 2^{4} \cdot 3 \qquad 48$$

12 16
$$48 = 12 \cdot 4 \qquad 48 = 16 \cdot 3 \qquad \frac{7}{12}$$

48

48

 $\frac{3}{16}$

 $\frac{7}{12} + \frac{3}{16} = \frac{7 \cdot 4}{12 \cdot 4} + \frac{3 \cdot 3}{16 \cdot 3}$ $= \frac{28}{48} + \frac{9}{48}$ $= \frac{37}{48}$ $2 \cdot 3^3 \qquad 2^2 \cdot 3^2 \cdot 5 \qquad 2^2^{-1}$

31


$$\left(-\frac{1}{3}\right)^2 + 4 = \frac{1}{9} + 4 \qquad -\frac{1}{3} \\ = \frac{1}{9} + \frac{36}{9} \qquad 4 = \frac{36}{9} \\ = \frac{37}{9}$$

 $\frac{3}{x^2} - \frac{2}{y} \quad x = -2 \qquad y = -5$ x = -2 y = -5

$$\frac{3}{x^2} - \frac{2}{y} = \frac{3}{(-2)^2} - \frac{2}{(-5)}$$

$$x = -2 \qquad y = -5$$

$$= \frac{3}{4} + \frac{2}{5}$$
rg q

$\frac{a}{2} + \frac{b}{5}$	$\frac{a}{18} - \frac{b}{15}$
$\frac{x}{7} - \frac{y}{5}$	$\frac{x}{12} + \frac{y}{8}$
$\frac{2}{5} + \frac{5}{6}$	$\frac{2}{5} \cdot \frac{5}{6}$
$\frac{7}{8} - \frac{1}{6}$	$\frac{7}{8} \div \frac{1}{6}$
$3\frac{3}{5}+1\frac{2}{5}$	$4\frac{2}{3}-3\frac{3}{4}$
$3 - \frac{2}{5}$	$\frac{3}{4} \div \frac{9}{8}$
$\frac{3}{4} \cdot \frac{8}{15}$	$\frac{2}{3} \div 7$

 $\left(=\frac{3}{4}\right)$

0.00154 0.005

97.3

x 17 x 93 x

x

$\frac{23}{36}, \frac{15}{24} \qquad -\frac{17}{12}, -1\frac{3}{8}$ $36 = 2^2 \cdot 3^2 \qquad 24 = 2^3 \cdot 3$ 72	
$\frac{23}{36} = \frac{23 \cdot 2}{36 \cdot 2} = \frac{46}{72} and \frac{15}{24} = \frac{15 \cdot 3}{24 \cdot 3} = \frac{45}{72}$	
$\frac{23}{36} > \frac{15}{24}$ $-1\frac{3}{8}$ $-\frac{17}{12}$ $-\frac{11}{8}$ 24 24	
$-\frac{17}{12} = -\frac{17 \cdot 2}{12 \cdot 2} = -\frac{34}{24} and -\frac{11}{8} = -\frac{11 \cdot 3}{8 \cdot 3} = -\frac{33}{24}$	
$-\frac{17}{12} < -\frac{11}{8} \qquad -\frac{34}{24} \qquad -\frac{33}{24}$	
39.42178 39.4231 -0.87263 -0.872904	$\frac{5}{12}$ 0.416
39.42178 39.4231	
1 m [mj	Γ

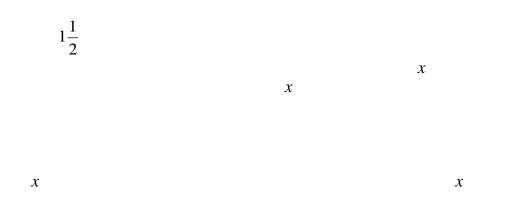
-0.872904 -0.87263

$\frac{15}{22}$	$\frac{30}{44}$	

 $\sec = \min \times \frac{\sec}{\min}$

 $180 \sec = 3 \min \times 60^{\sec}$

480

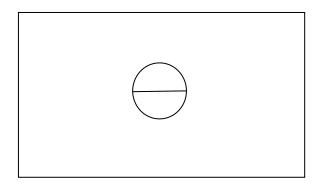

1380 3

x

 $\frac{x mg}{180 lb} = \frac{2 mg}{140 lb}$

$$x \qquad x = 180 \cdot \frac{2}{140} = 2.57143$$

 $7 \frac{dollars}{hour} \times 22 hours + (7+r)^{dollars}$


 $\frac{3}{7}$

 $\frac{5}{8}$

~

≈

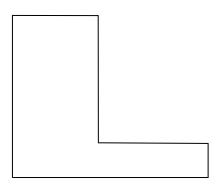
A P

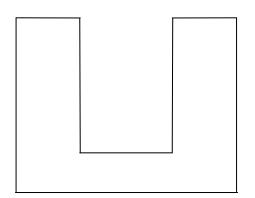
A = lw

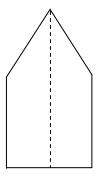
 $l = 40 \qquad w = 25$ $A = \pi r^2 \qquad r = 3$

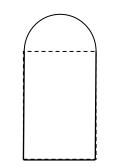
Tiled Area = $lw - \pi r^2 = 40 \cdot 25 - \pi \cdot 3^2 = 1000 - 9\pi \approx 971.726$

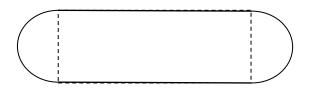
$$Cost = (1000 - 9\pi) ft^2 \times 3 \frac{dollars}{ft^2} \approx 2915.18$$

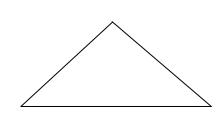

\$2,915


n n n n


n n


n n


b b



(5,2) (8,1) (5,-3) (-1,-3) (-3,-1) (-1,2)

(-1, 2)

Р

90°

$$a^2 + b^2 = c^2$$

$$|AB| = k|A'B'| \qquad |AC| = k|A'C'| \qquad |BC| = k|B'C'|$$

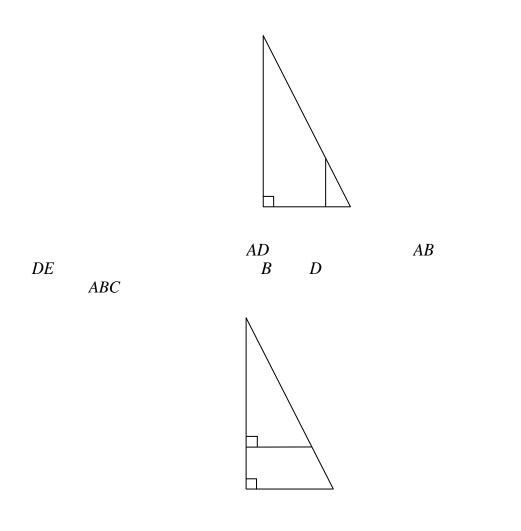
$$|AB| \qquad AB$$

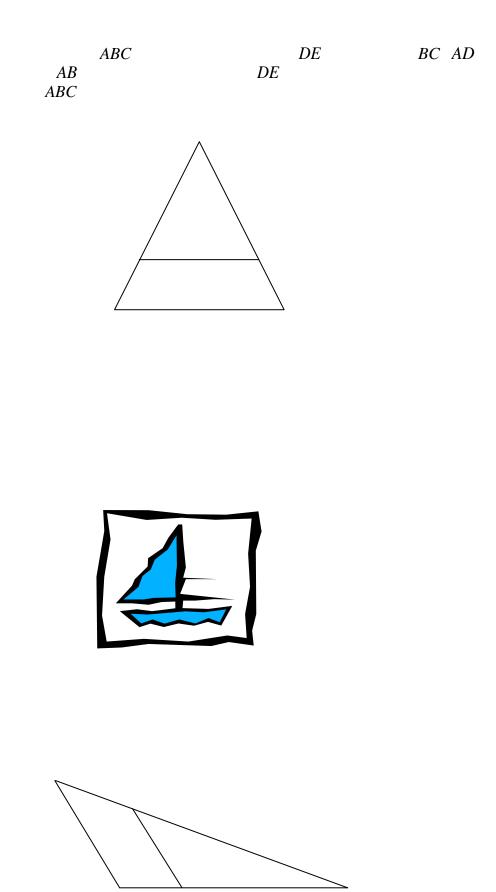
$$ABC \qquad A'B'C' \qquad k < 1 \qquad ABC$$

$$A'B'C' \qquad k > 1 \qquad ABC$$

$$A'B'C' \qquad k = 1$$

$$k = \frac{|AB|}{|A'B'|} = \frac{|AC|}{|A'C'|} = \frac{|BC|}{|B'C'|}$$




$$18 \frac{feet}{sec} \times 5 sec = 90 feet$$

d

$$d^2 = 50^2 + 90^2 = 10600$$

$$d = \sqrt{10600} \approx$$

٦ ـ

$$\frac{x^{-3}y^{-2}}{x^{5}y^{-7}z^{-4}} = x^{-3} \cdot \frac{1}{x^{5}} \cdot y^{-2} \cdot \frac{1}{y^{-7}} \cdot \frac{1}{z^{-4}}$$
$$= \frac{1}{x^{3}} \cdot \frac{1}{x^{5}} \cdot \frac{1}{y^{2}} \cdot y^{7} \cdot z^{4}$$
$$= \frac{y^{7}z^{4}}{x^{3}}$$

$$a^{-n} = \frac{1}{a^n}; a^n = \frac{1}{a^{-n}}$$

$$\left(\frac{a^2b}{c^3}\right)^2 = \frac{(a^2b)^{-2}}{(c^3)^{-2}}$$

$$\frac{(-2)^3}{-3} = \frac{-8}{-3} = \frac{8}{3}$$

$$(-2x^4)^3$$
 $(6y)^3$ $(-3a^4bc^5)^2$

$$x^{3}x^{-4}; \quad x = 5 \qquad (x^{-2})^{3}; \quad x = -2$$

$$(2x^{-1})^{3}; \quad x = 3 \qquad (x^{2} + y^{2})^{-1}; \quad x = -1, y = 2$$

$$x^{-2} + y^{-2}; \qquad =$$

 \sqrt{a}

a a

$$x$$
 $\sqrt{x^6} = \sqrt{(x^3)^2} = x^3$
 $\sqrt{x^{18}} = \sqrt{(x^9)^2} = x^9$

$$\sqrt{x^9} = \sqrt{x^8 x} = \sqrt{x^8} \sqrt{x} = x^4 \sqrt{x}$$

$$\sqrt{36x^{4}y^{7}} \qquad \sqrt{27x^{5}} \qquad \sqrt{\frac{8x^{2}y^{4}}{x^{6}y}} \qquad \sqrt{\frac{40x^{3}y^{2}z}{2x^{-5}y^{-3}}} \\ \sqrt{36x^{4}y^{7}} \qquad \sqrt{\frac{40x^{3}y^{2}z}{2x^{-5}y^{-3}}}$$

 x^2

x

$$\sqrt{36x^4y^7} = \sqrt{36}\sqrt{x^4}\sqrt{y^7}$$
$$= 6\sqrt{x^4}\sqrt{y^6y}$$
$$= 6\sqrt{x^4}\sqrt{y^6}\sqrt{y}$$
$$= 6x^2y^3\sqrt{y}$$

$$\sqrt{36} = 6 \qquad \qquad y^7 = y^6 y$$

$$\sqrt{x^4} = x^2 \quad \sqrt{y^6} = y^3$$

 $\sqrt{x^2} = x \qquad x$ $\sqrt{x^9}$

$$\sqrt{36x^4y^7}$$

$$\sqrt{27x^5} = \sqrt{9 \cdot 3x^4 x}$$

27 = 9

$$\sqrt{x^{3}y^{4}}; \quad x = 3, y = 2 \qquad \sqrt{x^{3}y^{5}}; \quad x = 4, y = 7$$

$$\sqrt{44x^{5}}; \quad x = 7 \qquad \sqrt{98x^{6}}; \quad x = 2$$

$$\sqrt{\frac{18x^{5}}{2x^{-2}}}; \quad x = 4 \qquad \sqrt{\frac{x^{3}y^{-4}}{x^{7}y^{-2}}}; \quad x = 3, y = 5$$

		m/n	т	n
n > 0				
$a^{m/n} = \left(\sqrt[n]{a}\right)^m$	or equivalently	$a^{m/n} = \sqrt[n]{a^m}$		
a	n	$a \ge 0$		

$$a^{p}a^{q} = a^{p+q}$$
 $5^{3/2}5^{1/2} = 5^{3/2+1/2} = 5^{2} = 25$ $8^{-1/3}8^{2/3} = 8^{-1/3+2/3} = 8^{1/3} = 2$
 a^{p}

∛2

21/3

$$\frac{a^{p}}{a^{q}} = a^{p-q} \qquad \frac{1}{a^{q}} = a^{-q} \qquad p = 0$$

$$5^{-2/3} = 1$$

 $\frac{1}{3x^7}$ $\frac{1}{\sqrt{3}}$ $\sqrt[3]{7^2}$ $\sqrt{5^3}$

 $3x^2 - 7x - 4$

$$6(2x^2 - 3x + 8) = 12x^2 - 18x + 48 \qquad and \qquad 2x^3(x^2 - 4) = 2x^5 - 8x^3$$

$$3(x^{2}-x+5)-2(4x^{2}-5x-3)$$

$$3x^{2}-5x+4 \qquad x^{3}-x^{2}+6x$$

$$3x^{2}(x-4)+4(x^{3}+7x^{2}-5)$$

 $=3x^3 - 12x^2 + 4x^3 + 28$

$$2x^{2}(x^{3}-8x)$$

$$2x^{2}(x^{3}-8x) = 2x^{2} \cdot x^{3} - 2x^{2} \cdot 8x = 2x^{5} - 16x^{3}$$

$$(2x-3)(4x+5)$$
 $4x+5$

$$(2x-3)(4x+5) = 2x(4x+5) - 3(4x+5)$$
$$= 2x \cdot 4x + 2x \cdot 5 - 3 \cdot 4x - 3 \cdot 5$$
$$= 8x^{2} + 10x - 12x - 15$$
$$= 8x^{2} - 2x - 15$$

$$3x^{2}y(x^{4}-2x^{2}y^{2}+5y^{4}) \qquad (2x+3y)^{2}$$

$$5(2a^{2}-3b^{2})(4a^{2}+b^{2}) \qquad (x+2y)(x^{2}-3xy+y^{2})$$

$$3x^{2}y(x^{4}-2x^{2}y^{2}+5y^{4}) = 3x^{6}y-6x^{4}y^{3}+15x^{2}y^{5}$$
$$(2x+3y)^{2}$$

$$(2x+3y)^{2} = (2x+3y)(2x+3y) \qquad (2x+3y)^{2}$$

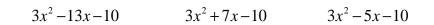
= 2x \cdot 2x + 2x \cdot 3y + 3y \cdot 2x + 3y \cdot 3y
= 4x^{2} + 6xy + 6xy + 9y^{2}
= 4x^{2} + 12xy + 9y^{2}

 $= x^3 - x^2 y - 5xy^2 + 2y^3$

a(b+c)

ab+ac

ab+ac


-12		
12,-1	(x+12)(x-1)	11 <i>x</i>
-12,1	(x-12)(x+1)	-11x
6,-2	(x+6)(x-2)	4 <i>x</i>
-6,2	(x-6)(x+2)	-4x
4,-3	(x+4)(x-3)	X
-4,3	(x-4)(x+3)	- <i>x</i>

 $x^2 + 4x - 12 = (x+6)(x-2) \qquad 4x$

$$x^{2} - x - 12 = (x - 4)(x + 3) - x$$

$$x^2 + 2x - 12$$

 $2x x^2 + 2x - 12$

$$x^2$$
 -10

3

3	-10		
3,1	10 1	(2.1 + 10)(1.1)	7
3,1	10,-1	(3x+10)(x-1) (3x-1)(x+10)	7x 29x
3,1	-10,1	(3x-1)(x+10) (3x-10)(x+1)	-7x
- 7	- 7	(3x+10)(x+1) (3x+1)(x-10)	-29x
3,1	5,-2	(3x+5)(x-2)	- <i>x</i>
		(3x-2)(x+5)	13x
3,1	_		

 $A^2 - B^2 = (A - B)(A + B)$

$$25x^{2}-9 \qquad x^{2}-4y^{2} \qquad a^{4}-16b^{4}$$
$$25x^{2}-9 = (5x)^{2}-(3)^{2}$$
$$A = 5x \qquad B = 3$$
$$25x^{2}-9 = (5x)^{2}-(3)^{2}$$
$$= (5x-3)(5x+3)$$
$$x^{2}-4y^{2} = (x)^{2}-(2y)^{2}$$

A =

$$8x^3y^2 - 2xy^4 = 2xy$$

$5x^2 - 23x + 24 = (5x)$)(<i>x</i>)	$5x^2 + 14x - 24 = (5x)$)(<i>x</i>)
--------------------------	-------------	---	--------------------------	-------------	---

$$2x^2 + 5x - 3$$
 $2y^2 - 19y - 10$

$$3a^2 + 8a + 5$$
 $5x^2 + 7x - 6$

$$3t^2 + 13t - 10$$
 $3y^2 - 2y - 1$

$$9a^2 - 18a - 16$$
 $4y^2 + 12y + 9$

$$6x^2 - x - 12$$
 $2y^2 - 11y + 14$

$$6b^2 + 7b - 3$$
 $4s^2 - 9s + 2$

$$15x^2 + 16x + 4$$
 $8t^2 + 5t - 22$

$$2x^2 + xy - 6y^2 \qquad \qquad 2s^2 - 11st + 5t^2$$

$$6a^2 - 7ab + 2b^2 \qquad \qquad 9x^2 + 24$$

$$6x^2 - xy - 12y^2$$
 $3x^2 + 10xy - 24y^2$ $5ab^2x^2 - 10ab^2x - 15ab^2$ $24a^2 - 18ab + 3b^2$ $x^4 + 5x^2 + 6$ $2x^4 - 5x^2 + 3$ $x^4 - y^4$ $a^6(a+1)^2 + a^7(a+1)$ $(x-2)(x+5)^2 + (x-2)^2(x+5)$ $x^2(x^2-1) - 9(x^2-1)$ $9x^4 - 49$ $5a^3 - 125a$ $x^2(x-3) - 4(x-3)$ $a^2(x-y) - b^2(x-y)$ $5x^4 - 80y^4$ $4x^2 + 24xy + 36y^2$

$$\frac{a^2b^3-a^2b}{a^2b+a^2}$$

$$\frac{a^{2}b^{3}-a^{2}b}{a^{2}b+a^{2}} = \frac{a^{2}(b^{3}-b)}{a^{2}(b+1)} \qquad a^{2}$$
$$= \frac{b(b^{2}-1)}{b+1} \qquad a^{2} \qquad b^{3}-b$$
$$= \frac{b(b-1)(b+1)}{b+1} \qquad b^{2}-1=(b-1)(b+1)$$
$$= b(b-1) \qquad b+1$$

$$\frac{y^2 - x^2}{x^2 - xy}$$

$$\frac{y^2 - x^2}{x^2 - xy} = \frac{(y - x)(y + x)}{x(x - y)}$$

= $\frac{-(x - y)(y + x)}{x(x - y)}$ $y - x = -(x - y)$
= $-\frac{y + x}{x}$ $x - y$

 $45a^{3}b^{4}$ $9a^{5}b$

$\frac{18x^4y^7}{24x^8y^4z}$	$\frac{6(x+4)^3(x-2)^2}{30(x+4)^2}$
$\frac{4(a-b)(a+b)^2}{7(b-a)(a+b)^2}$	$\frac{(x-2)(3x+5)^2}{(2-x)(3x+5)^3}$
$\frac{x^3 + 3x^2}{x^2 + 2x^4}$	$\frac{3x^2-15x}{12x-60}$
$\frac{a^2b^2 + a^2b^4}{a^2b^2 + a^4b^2}$	$\frac{x^2y}{x^2y+x^4y^2}$
$\frac{x^3yz + xy^3z + xyz^3}{x^2y^2z^2}$	$\frac{6t^4 - 18t^3}{4t^2 - 12t}$
$\frac{t^3 - 2t^2 + t}{t^2 - t}$	$\frac{2a^2b^2 - 10a^6b^8}{2a^2b^2}$
$\frac{x^2-4}{x+2}$	$\frac{x^2+4x+3}{x+1}$
$\frac{x^2 + 6x + 8}{x^2 + 5x + 4}$	$\frac{(a-3)^2}{a^2-9}$
$\frac{x^2+2x-3}{x^2+x-6}$	$\frac{6x+12}{x^2+5x+6}$
$\frac{4x^2 - 4}{12x^2 + 12x - 24}$	$\frac{4y^3 + 4y - 8y}{2y^3 + 4y - 6y}$
$\frac{y^2 - y - 12}{y^2 + 5y + 6}$	$2x^2 + 5x - 3$ $3x^2 + 11x +$

 $3x^{2} +$

$$=\frac{x^{5}}{5x-10} \cdot \frac{2x-4}{x^{2}} \qquad \qquad \frac{x^{2}}{2x-4}$$
$$=\frac{x^{5}}{5(x-2)} \cdot \frac{2(x-2)}{x^{2}} \qquad \qquad 2x-4 \quad 5x-10$$
$$=\frac{2x^{3}}{5}$$

$$\frac{3x^{2}}{x^{2}-9} \cdot \frac{x+3}{12x} \qquad \qquad \frac{2x^{2}+7x-4}{2x^{2}-3x+1} \cdot \frac{3-x}{x-3}$$

$$\frac{x^{2}-x-6}{x^{2}-1} \cdot \frac{x+1}{x-3} \qquad \qquad \frac{x^{2}+5x+6}{x^{2}+2x} \cdot \frac{x^{3}+x}{x^{2}+4x+3}$$

$$\frac{x^{2}y+3xy^{2}}{x^{2}-9y^{2}} \cdot \frac{x^{2}-2xy-3y^{2}}{5x^{2}y} \qquad \qquad \frac{2x^{2}+3x+1}{x^{2}+2x-15} \cdot \frac{x^{2}+6x+5}{2x^{2}-7x+3}$$

$$\frac{x^{4}}{x+2} \cdot \frac{x^{3}}{x^{2}+4x+4} \qquad \qquad \frac{3x^{2}+2x-1}{x^{2}-1} \cdot \frac{x^{2}-2x+1}{3x^{2}-7x+2}$$

$$\frac{2a^{2}-ab-b^{2}}{a^{2}-2ab+b^{2}} \cdot \frac{2a^{2}+ab-3b^{2}}{2a^{2}+3ab+b^{2}} \qquad \qquad \frac{x^{2}-2x-15}{x^{2}-4x-5} \cdot \frac{x^{2}+8x+7}{x^{2}+7x+12}$$

$$\begin{aligned} x-2 & x+1 & (x-2)(x+1) \\ \frac{2}{x-2} & \frac{3}{x+1} \\ (x-2)(x+1) & \\ \frac{2}{x-2} & -\frac{3}{x+1} = \frac{2(x+1)}{(x-2)(x+1)} - \frac{3(x-2)}{(x+1)(x-2)} \\ (x-2)(x+1) & \\ \end{aligned}$$

$$=\frac{2(x+1)-3(x-2)}{(x-2)(x+1)}$$
$$=\frac{2x+2-3x+6}{(x-2)(x+1)}$$
$$=\frac{-x+8}{(x-2)(x+1)}$$

$$2y + \frac{3}{y+1} \qquad \frac{1}{x^2 + 4x + 4} - \frac{x+1}{x^2 - 4} \qquad \frac{3}{t} - \frac{2}{t+2} + \frac{4}{t^2 + 2t}$$

$$2y \qquad 1$$

$$1 \qquad y+1 \qquad y+1 \qquad 2y \qquad \frac{3}{y+1}$$

$$y+1$$

$$2y + \frac{3}{y+1} = \frac{2y(y+1)}{y+1} + \frac{3}{y+1}$$

1	x+1 _	1	x+1	
$x^2 + 4x + 4$	$\frac{1}{x^2-4}$	$\frac{1}{(x+2)^2}$	$\frac{1}{(x-2)(x+2)}$	
	x-2	((x+1)(x+2)	
$-\frac{1}{(x)}$	$(x-1)^{2}($	2) $(x-x)^{-1}$	$\overline{2)(x+2)(x+2)}$	

7x - 20 = 2x - 5	x = 2(3x-1) - 5(2-x) = 7
7x - 20 = 2x - 5	X
x	x

$$\frac{2x-1}{3} = \frac{x+1}{4}$$

$$12\left(\frac{2x-1}{3}\right) = 12\left(\frac{x+1}{4}\right)$$

$$4(2x-1) = 3(x+1)$$

$$8x-4 = 3x+3$$

$$5x = 7$$

$$4 \qquad 3x$$

$$x = \frac{7}{5}$$

$$5$$

x = 0.15x + 20000.15x

x - 0.15x = 2000

x - 0.15x = (1 - 0.15)x = 0.85x

$$30\left(\frac{4}{5}x\right) = 30\left(\frac{2}{3}x + \frac{1}{6}\right)$$
$$24x = 20x + 5$$

$$\frac{5}{9}(27) = \frac{5}{9}\left(\frac{9}{5}C\right) \qquad \qquad \frac{5}{9}$$

15 = C

3x - 5 = 13	6 - 2x = -8
5 = 3x - 9	-2 = 4 - x
3x + 7 = 5x - 11	9x + 4 = -4x - 7
2(3x-7) = 8x+10	4(x-1) = 6(3-2x)

$$0.05x = x - 190$$

$$0.07x + 0.05(1000 - x) = 65$$

$$25 = \frac{5}{3}(x - 12)$$

$$16 = \frac{4}{7}x - 8$$

$$\frac{1}{4}x - \frac{2}{3} = 1$$

$$\frac{7}{5}x - 7 = 2.8$$

$$\frac{2}{5}(x + 3) = x - 1$$

$$18\pi + 6\pi$$

$$\frac{r}{a} - \frac{3t}{b} = 2$$

$$\frac{r}{a} - \frac{3t}{b} = 2$$

$$ab\left(\frac{r}{a} - \frac{3t}{b}\right) = 2ab$$

$$br - 3at = 2ab$$

$$br - 2ab = 3at$$

$$\frac{br - 2ab}{3a} = t$$

$$3at$$

$$3at$$

$$t = \frac{br - 2ab}{3a}$$

ax-3(b-cx) = dx; for x

$$\frac{x-a}{y+b} = \frac{cx}{d}; \text{ for } x$$

$$-3(b-cx) = -3b + 3cx$$

$$ax-3(b-cx) = dx$$

$$ax-3b+3cx = dx$$

$$ax+3cx-dx = 3b$$

$$(a+3c-d)x = 3b$$

$$x = \frac{3b}{a+3c-d}$$

x

 $3b \qquad dx \\ x \qquad a +$

ab

$$\frac{x-a}{y+b} = \frac{cx}{d}$$

d(y+b)

$$V \qquad r \qquad h \quad V = \frac{1}{3}\pi r^{2}h$$

$$h \qquad F = \frac{9}{5}C + 32 \qquad C$$

$$F \qquad C \qquad C$$

$$z \qquad x \qquad z = \frac{x - \overline{x}}{s}$$

$$s \qquad cm \qquad I$$

I

 \overline{x}

$$0.75x = 247.50$$

$$0.75x = \frac{247.50}{0.75}$$

$$x = 330$$

$$0.75$$

0.03x + 0.035(50000 - x) = 1687.500.03x

2x + 2(x+3)

2x + 2(x+3)

7.50(2x+2(x+3)) = 345

$$7.50(2x+2(x+3)) = 345$$

$$7.50(4x+6) = 345$$

$$30x+45 = 345$$

$$30x = 300$$

$$x = 10$$

$$45$$

$$30$$

$$x = 10$$
 $x + 3 = 13$

$$2\min \times \frac{1 hour}{60\min} = \frac{1}{30} hour$$

$$t + \frac{1}{30}$$

$$10x + 25 \frac{1}{2}x$$

x x x

x x

 $\begin{array}{ccc}
h \\
x \\
h \\
x
\end{array}$

 $x \qquad x \qquad 3\frac{1}{2} \qquad x \qquad x$

x x x

x x

x x x x x

x x

≤ 3≤7-2

 \geq

 $2x - 3 \le 9$

x		$2x-3 \leq 9$	
	X		
	X		X

x	$2x - 3 \le 9$	
	$2 \cdot 4 - 3 = 5 \le 9?$	
	$2 \cdot 5 - 3 = 7 \le 9?$	
	$2 \cdot 6 - 3 = 9 \le 9?$	
	$2 \cdot 7 - 3 = 11 \le 9?$	

'83129

 $2x-3 \leq 9$

-7 < -3

$$\frac{1}{2}x - \frac{2}{3}x > \frac{1}{3} + x$$

6 $\frac{1}{2}$

$$\frac{2x}{3} < 3.8$$

$$2 - (1 - 3x) \ge 5 - 2(3 - x)$$

$$\frac{1}{2} \left(x - \frac{1}{3} \right) > 2$$

$$7x + 1 \le 3 - (2x - 4)$$

$$2(1 - 3x) \le 3(2 + x)$$

$$0.01x + 2.6 \ge 1.3$$

$$-\frac{5}{3}x - 18 > x + \frac{1}{3}x$$

$$\frac{1}{3}x - \frac{1}{4}x \le 5 - x$$

$$\frac{5x}{12} \ge \frac{7x}{18} + \frac{1}{6}$$

$$slope = \frac{change in y}{change in x} = \frac{-2}{4} = -\frac{1}{2}$$

$$(6, -1) \quad (2, 1) \qquad x$$

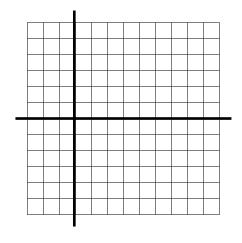
$$y$$

$$change in y \quad 2 \quad 1$$

$$slope = \frac{change in y}{change in x} = \frac{2}{-4} = -\frac{1}{2}$$

(1,3)

(1,3)	x	
	(2,5)	
x		у


y

y

C

f

(-4,0),(0,2)	(0,0), (4,3)		
(3,-5), (3,2)	(4,-2), (4,3)		
(-1,0), (-3,0)	(-2,3), (3,-2)		
(-3,-1), (1,-2)	(1,1), (4,3)		

$$m (x_1, y_1)$$
(x, y)

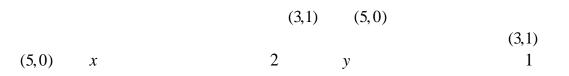
 $\frac{change in y}{change in x} = \frac{y - y_1}{x - x_1} = m$

y

$$\frac{y - y_1}{x - x_1} = m$$

$$y - y_1 = m(x - x_1)$$

$$y = m(x - x_1) + y_1$$


$$y = mx - mx_1 + y_1$$

$$y = mx + b$$

$$b = -mx_1 + y_1$$

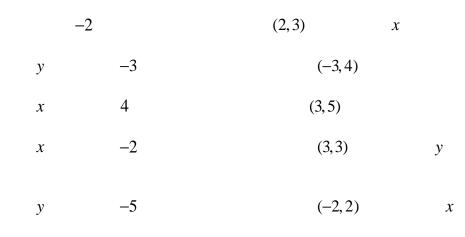
X	$y = \frac{3}{2}x - 4$

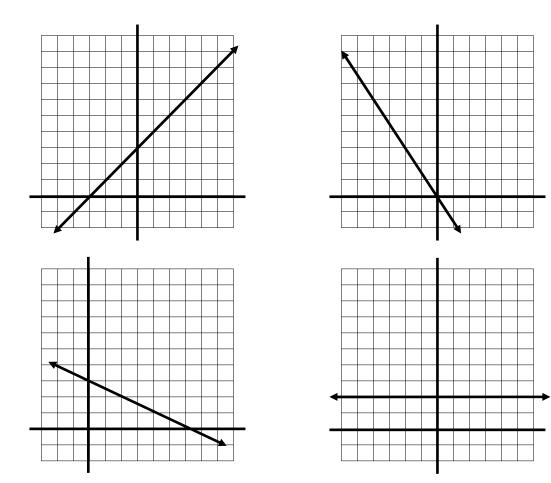
$$2x - 3y = 6$$
$$-3y$$

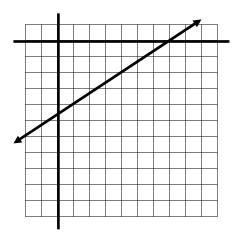
$$slope = \frac{change in y}{change in x} = \frac{-1}{2} = -\frac{1}{2}$$

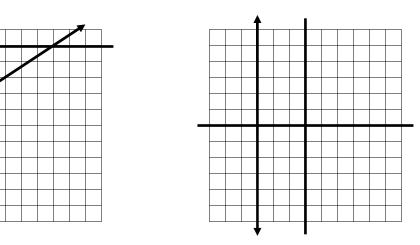
$$y = -\frac{1}{2}x + b$$

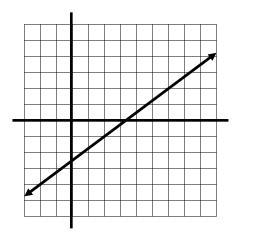
$$0 = -\frac{1}{2}(5) + b \qquad b = \frac{5}{2}$$
$$y = -\frac{1}{2}x + \frac{5}{2}$$

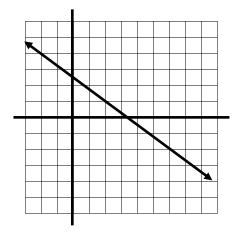

$$y = \frac{2}{3}x - 4$$
 $y = -\frac{3}{5}x - 2$


x y


$$x + y = 4 \qquad \qquad 3x - 2y = 6$$


$$2x - 5y = 0$$


у



$$m_1 \qquad m_2$$

$$m_1 m_2 = -1$$

$$m_2 = -\frac{1}{m_1}$$

(3,-4)

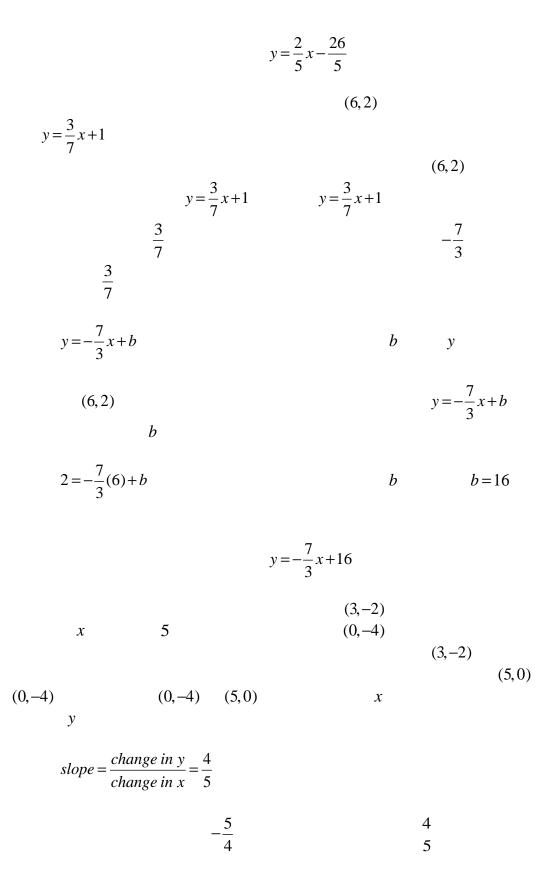
(3,-4)

2*x*

-5

2x - 5y = 7

2x - 5y = 7


2x - 5y = 7

2x - 5y = 7	
-5y = -2x + 7	
2 7	
$y = \frac{2}{5}x - \frac{7}{5}$	

 $\frac{2}{5}$

 $y = \frac{2}{5}x + b$ (3,-4) b $y = \frac{2}{5}x + b$ b

 $-4 = \frac{2}{5}(3) + b$ $b = -\frac{26}{5}$

$$(-1,-2) \quad (8,1) \qquad (-2) \cdot \frac{1}{3} = -\frac{2}{3}$$

$$x-4y=6 \text{ and } -2x+8y=12$$

$$x+3y=9 \text{ and } -2x-3y=18$$

$$4x+2y=10 \text{ and } x-2y=4$$

$$3x-4y=12 \text{ and } 4x-3y=24$$

$$2x-3y=6 \text{ and } y=\frac{3}{2}x+5$$

$$7x-5y=35 \text{ and } y=-\frac{5}{7}x$$

$$3x+5y=15 \text{ and } y=-\frac{3}{5}x+7$$

$$8x-3y=0 \text{ and } y=-\frac{3}{8}x-12$$

$$(-1,4)$$

$$y=3x-2$$

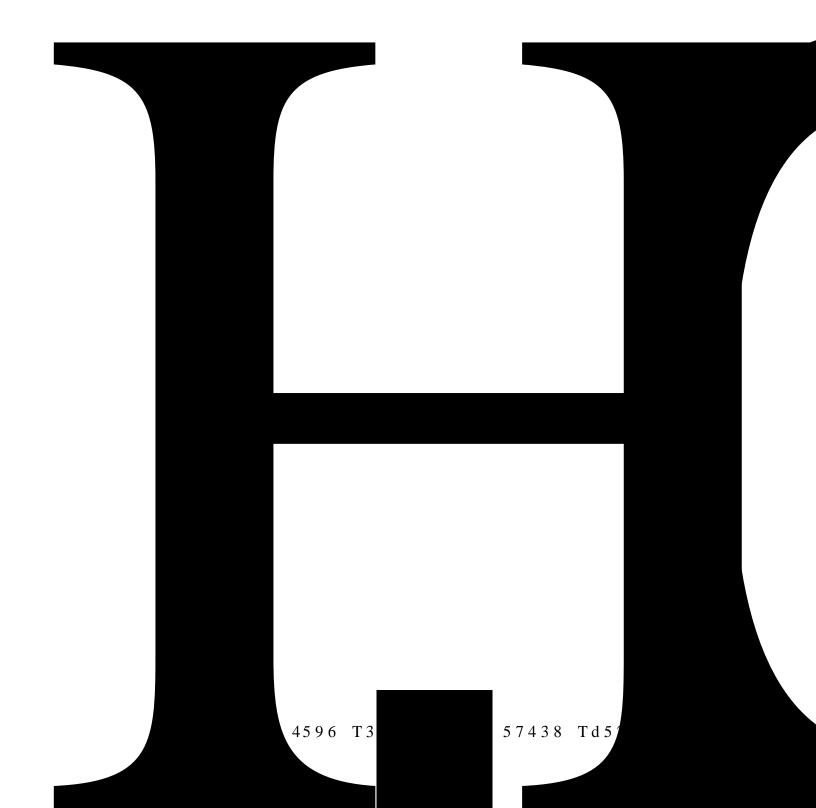
$$(-2,3)$$

$$y=7$$

$$(-2,3)$$

$$x=-5$$

$$(2,1)$$


$$y=\frac{2}{3}x+1$$

$$x -5$$

2x+3y

(4,3)
$$x+3y+1=0$$

(-1,-3)

-5x+3y-15=0

(-3,-1) (3,3) (-9,8)

$$2(-3)^{2}+(-3)-15=18-3-15=0$$

$$(x-p)^2 = q \qquad p \qquad q$$

q > 0

	$ax^2 + bx + c = 0$	$D = b^2 - 4ac$
D>0		
D = 0		
D < 0		

$$x = \frac{1+5}{4} \quad or \quad x = \frac{1-5}{4} \qquad + \qquad -$$

$$x = \frac{3}{2} \qquad x = -1$$

$$a = 4 \quad b = -12 \qquad c = 9$$

 $D = b^{2} - 4ac$ $D = (-12)^{2} - 4(4)(9)$

$$x^{2}+3x-10=0$$

(x+5)(x-2)=0
x+5=0 or x-2=0
x=-5 or x=2
$$x^{2}+3x-10$$

$$x = -5 \qquad x = 2$$

$$a = 1$$
 $b = 3$ $c = -10$

$$x = \frac{-3 \pm \sqrt{3^2 - 4(1)(-10)}}{2(1)} \qquad a = 1 \quad b =$$

(x)

$x^2 + 6x + 9 = 7 + 9$	$\left(\frac{6}{2}\right)^2 = 9$
9 9 $x^{2}+6x$ $x^{2}+6x$	
$(x+3)^2 = 16$ x+3=4 or x+3=	$x^2 + 6x + 9 = (x+3)^2$

 $x^2 + 2x + 5 = 0$

(*x*

x y $y = ax^{2} + bx + c a \neq 0 b c$ (x, y)

I

 $x = 0 \qquad y = 2(x -$

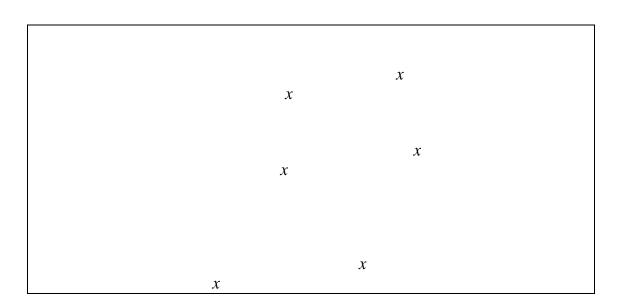
$$\begin{aligned} -x^{2} + 4x \\ &= -(x^{2} - 4x) & -1 \\ &= -(x^{2} - 4x + 4 - 4) & \left(\frac{-4}{2}\right)^{2} = 4 \\ &= -((x - 2)^{2} - 4) & x^{2} - 4x + 4 = (x - 2)^{2} \\ &= -(x - 2)^{2} + 4 & -1 \\ &-x^{2} + 4x & -(x - 2)^{2} + 4 & y = -x^{2} + 4x + 5 \\ &y = (-x^{2} + 4x) + 5 \end{aligned}$$

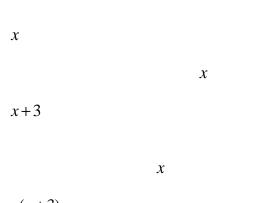
$$x = -1$$
 $x = 5$

$$-(x-2)^2+9=0$$

$$-(x-2)^{2}+9=0$$

$$(x-2)^{2}=9$$


$$x-2=3 \text{ or } x-2=-3$$


$$x=5 \text{ or } x=-1$$

$$9 -1$$

$$y = -\frac{1}{2} \left(x + \frac{3}{2} \right)^2 + \frac{15}{8} \qquad \qquad y = \left(x - \frac{5}{2} \right)^2 - \frac{9}{4}$$
$$y = 4(x+1)^2 - 8 \qquad \qquad y = \frac{1}{2} \left(x - \frac{3}{2} \right)^2 - \frac{25}{8}$$

x

x(x+3)

$$2.50 \frac{dollars}{ft^2} \times x(x+3) ft^2 = 2.50 x(x+3) dollars$$

y

 $2x+y=7 \quad x+2y=2$ (x, y) (x, y) $x=4 \quad y=-1$ $x=4 \quad y=-1$

3(2)+4(-

7x+

x

y=3 y=3

$$x - 2y = -4 \qquad -3x + 6y = 12$$

x+2y=5 $y=2x+1$	3x + 2y = 0 $x = y - 5$
x = 3y - 7 $x = -y + 1$	y = 2x - 3 $y = -3x + 17$
x - y = 3 $3x + y = 5$	x + y = 8 $3x - 2y = -1$
2x + y = 5 $-x + 3y = 8$	3x + 4y = 1 $2x - y = 19$
2x + 3y = 10 $2x + y = -6$	3x + 2y = 5 $x + y = 4$
2x + 4y = -9	

x **4**333

2x + 3y = -1	3x - 4y = 6
4x + 2y = 2	-9x + 5y = -18
5x - 3y = 0	x + 5y = 1
3x + y = 14	x - 3y = 9
2	0
3x - 2y = 4	2x + 3y = 12
5x - 3y = 7	7x - 5y = 11
4x - 3y = 5	4x - 10y = -1
2x + 6y = 5	8x + 5y = 8
	Tm Tj TQQq m I

x + y = 3	2x - 3y = 9
2x - y = 0	x + 2y = 1
y = x + 3	2x + y = -1
y = 2x - 1	x - 2y = -8

$$f(x) = \frac{x^{2}}{x^{3} + 1} \qquad x = -2, 0, 1, 2, 3$$

$$f \qquad 1 \qquad 1$$

$$f \qquad x \qquad \frac{x^{2}}{x^{3} + 1}$$

$$f(-2) = \frac{(-2)^2}{(-2)^2}$$

$$\begin{cases} x \in R : x \neq -1 \end{cases} & x \in R \\ x \neq -1 & & & \\ f & & \\ Domain(f) = (-\infty, -1) \cup (-1, \infty) & & & \\ -1 & (-1, \infty) & & & & -1 \end{cases}$$

$$x \ge \frac{3}{2}$$

 $Domain(f) = x \in R : x \ge$

$$f(x) = \sqrt{2x+1} \quad x = -\frac{1}{2}, 0, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, 4$$

$$f(x) = \frac{x^2 - 1}{x^2 + 1} \quad x = -2, -1, 0, 1, 2$$

$$f(x) = \sqrt{x^2 + x - 2} \quad x = -5, -3, -2, 1, 2, 5$$

$$f(x) = x + \frac{1}{x^2 + 1} \quad x = -2, -1, 0, 1, 2$$

$$f(x) = \frac{1}{2x+1} + \frac{1}{2x-1}$$

S

fDomain(f) = -

$$\frac{2}{x+1} + \frac{1}{x-1} = \frac{5}{x^2 - 1}$$

	3x+5 =8		
	8		
8 -8	3x + 5	8	-8
	$3x + 5 = 8 \qquad 3x + 5 = -8$		
3x + 5 = 8			
3x = 3	5		
X			

$$4\sqrt{7-3x} = 12 \qquad \qquad \frac{2}{x-1} + \frac{1}{x^2 + x - 2} = \frac{1}{x+2}$$
$$|9-2x| = 7 \qquad \qquad \sqrt{|2x+6|} = 4$$
$$\frac{3}{x} - \frac{2}{x+1}$$